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The finite size effects of nanoparticles on the atomic pair distribution functions

(PDF) are discussed by calculating the radial distribution functions (RDF) on

nanoparticles with various shapes, such as sheet, belt, rod, tube and sphere,

assuming continua. Their characteristics are shown depending on the shapes and

the sizes of the nanoparticles. The formulas of a PDF analysis which take

account of such effects are presented and are found to reproduce the

experimental data.

1. Introduction

Many types of nanoparticles have been synthesized and

studied on their physical and chemical properties. The nano-

particles may exhibit exotic physical properties, which can be

different from those of the bulk materials, owing to their finite

sizes and their large volume fraction of the surface atoms. The

atomic scale crystal structures of nanoparticles give us infor-

mation to help in understanding their properties. However, it

is hard to determine their structures by ordinary techniques

used for bulk materials, for example, traditional Rietveld

analysis. In the cases of nanoparticles, the diffraction patterns

mainly consist of diffuse broad peaks because the periodicity

of their unit cells is limited to nanoscale.

The technique of atomic pair distribution function (PDF)

analysis can be applied to the determination of the local

structure of nanoparticles. For the system composed of one

kind of atom, the number of pair atoms in a shell of thickness

dr at distance r from another one are obtained as RðrÞ dr,

where RðrÞ is the radial distribution function (RDF). RðrÞ is

related to the reduced pair distribution function GðrÞ via the

pair distribution function gðrÞ as follows (Egami & Billinge,

2003).

gðrÞ ¼ RðrÞ=4�r2�0; ð1Þ

GðrÞ ¼ 4�r�0½gðrÞ � 1�; ð2Þ

where �0 is a number density of atoms in the sample.

Experimentally, GðrÞ can be obtained from the total scattering

measurement, generally on a powder sample. GðrÞ is deter-

mined from the structure function SðQÞ of the total scattering,

via Fourier transformation as follows.

GðrÞ ¼ ð2=�Þ
R

Q½SðQÞ � 1� sinðQrÞ dQ; ð3Þ

where Q is the magnitude of the scattering wavevector and

SðQÞ is the data for the sample with no preferred orientation

in an ideal case. In the cases of amorphous materials and

nanoparticles, even if SðQÞ does not have any well defined

peaks as mentioned above, GðrÞ can have sharp peaks, at least

in the small-r region. Then the PDF analysis is applicable to

the structural analysis of the materials with only short-range

correlation. Recently, the technique of PDF has been applied

to the determination of the structure of nanoparticles

(Mckenzie et al., 1992; Gilbert et al., 2004; Petkov et al.; 2004;

Gateshki et al., 2004).

So far, the effects of the shape and finite size of a nano-

particle, however, have not been considered in the PDF

analysis. The atomic correlation remains only in the size and,

as a result, GðrÞ does not have any peak in the longer-r region

than the particle size if there is no correlation between nearby

particles. Actually, GðrÞ of C60 shows sharp peaks at r shorter

than the diameter of the C60 molecule while, at r longer than

the diameter, GðrÞ has only weak broad peaks corresponding

to the correlation between the molecules (Egami & Billinge,

2003). Furthermore, the peak intensities of the PDF must be

reduced with increasing r, in comparison with those of the

bulk sample. So the distribution functions modified by their

sizes and shapes need to be used for the detailed structural

analyses of nanoparticles.

Such a detailed analysis gives other structural information

on the nanoparticle. The nanoparticle of zinc sulfide is

analyzed by PDF with the spherical shape effect (Gilbert et al.,

2004). After they determined the average size and the shape of

the nanoparticle by means of small-angle X-ray scattering and

ultraviolet–visible absorption spectroscopy, they discussed the

disorder and the strain in the nanoparticle from the difference

between the average size and the local correlation size by

PDF. The corrections for the size and shape effects are

crucial to a discussion of the local lattice disorder in the

nanoparticle.

In this paper, we calculate the RDFs of the various nano-

particles by assuming that they are continua, for the correc-

tions of the size and shape effects, and obtain the correction

factor to the RDFs and the reduced PDFs for the various

nanoparticles. We present formulas of PDFs including the

correction factor and apply the formula to the experimental

data of TiO2 nanoparticle, as an example.



2. Calculations of radial distribution functions and
correction factors on nanoparticles

2.1. Calculation method

In the calculation of the radial distribution function RðrÞ of

a nanoparticle, we consider the atomic pair distribution only in

the particle and assume that the atomic number density is zero

(vacuum) outside the particle. The atomic number density in

the nanoparticle is �00. The RDF of a three-dimensional

continuum with infinite size is given as R1ðrÞ ¼ 4�r2�00, as

mentioned in x2.2. So the RDF of the nanoparticle, RnanoðrÞ, is

modified by the correction factor f ðrÞ, which is defined as

f ðrÞ ¼ RnanoðrÞ=R1ðrÞ: ð4Þ

When r! 0, f ðrÞmust be unity, and, when r is longer than the

size of the nanoparticle or r!1, f ðrÞ becomes zero. This

factor can be regarded as a kind of particle form factor instead

of the well known atomic form factor.

In this paper, we assume that nanoparticles are randomly

oriented to the incident beam, resulting in no preferred

orientation effect to the structure function SðQÞ.

In the real analysis, the pair distribution between the

particles should be considered. The formulation including the

pair distribution between particles will be discussed in the next

section.

2.2. Simple case

In this section, we take up simple cases and discuss the

effect of the dimensionality of a particle to the radial distri-

bution function. First, we consider the wire with an infini-

tesimal thickness shown in Fig. 1(a). The density in this wire is

defined as �00;1D, whose dimension is an inverse of the length.

Here we assume that r is much shorter than the length of the

wire L. The number of atoms in a length dr at a distance r from

an atom at the origin (O) is 2�00;1D dr, as shown in the figure.

Then the RDF is obtained as

R1DðrÞ ¼ 2�00;1D: ð5Þ

In the case of the sheet with an infinitesimal thickness shown

in Fig. 1(b), if r� L, atoms paired with an atom at the origin

O are in the ring with radius r and thickness dr, which is shown

by the bold line in Fig. 1(b). So R2DðrÞ is given by

R2DðrÞ ¼ 2�r�00;2D: ð6Þ

In the case of the three-dimensional block shown in Fig. 1(c),

paired atoms are in the spherical shell with a radius r and a

thickness dr, and R3DðrÞ is given by

R3DðrÞ ¼ 4�r2�00;3D: ð7Þ

In the cases of one-, two- and three-dimensional nanoparticles,

RDFs have r constant, r linear and r squared dependences,

respectively.

Next, we calculate the RDF of the nanobelt with a width a

and an infinitesimal thickness which is shown in Fig. 1(d) as an

example of a typical nanoparticle. Here, it is assumed that

r� L. In this case, we consider the number of atoms in an

annulus of thickness dr at a distance r from an atom at a

position P which is distant from the edge of the belt by p, as

shown in the figure. It is given by Rðr; pÞ dr. So Rðr; pÞ can be

regarded as the ‘partial radial distribution function’ (PRDF)

at p. RðrÞ is given by
R a

0 Rðr; pÞ dp=a. If r � a=2, Rðr; pÞ is

proportional to the length of the circumference for

r � p � a� r, and it is proportional to the length of the

arcs with interior angles of 2�� 2� for p � r and

2�� 2�0 for a� r � p � a, where � ¼ arccos ðp=rÞ and

�0 ¼ arccos ½ða� pÞ=r�. So

R2DbeltðrÞ ¼
Rr
0

ð2�� 2�Þr dpþ
Ra�r

r

2�r dp

�

þ
Ra

a�r

ð2�� 2�0Þr dp

�
�00;2D=a:

In the case of a=2 � r � a, Rðr; pÞ is proportional to the length

of the arcs with interior angles of 2�� 2� for p � a� r and

2�� 2�0 for r � p � a. At the other p, Rðr; pÞ is proportional

to the length of the bold line shown in Fig. 1(d). Then

R2DbeltðrÞ ¼
Ra�r

0

ð2�� 2�Þr dpþ
Rr

a�r

ð2�� 2� � 2�0Þr dp

�

þ
Ra
r

ð2�� 2�0Þr dp

�
�00;2D=a:
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Figure 1
Schematic diagram of (a) one-dimensional, (b) two-dimensional and (c)
three-dimensional particles, and (d) a nanobelt.

Figure 2
The radial distribution functions of the wire (1D), the sheet (2D) and the
nanobelt.



Since, for r � a, Rðr; pÞ is obtained by the bold line for all p,

R2DbeltðrÞ ¼
Ra
0

ð2�� 2� � 2�0Þr dp

� �
�00;2D=a:

By calculating the above integrations, we obtain the RDF of

the nanobelt as follows.

R2DbeltðrÞ ¼

ð2�ar� 4r2Þ�00;2D=a ðr � aÞh
2�ar� 4r2 � 4ar arccos

a

r

� �

þ 4rðr2 � a2Þ1=2
i
�00;2D=a ðr � aÞ.

8>><
>>:

ð8Þ

When r is much shorter than a, R2Dbelt � 2�r�00;2D, which is

equal to R2DðrÞ. For r� a, R2Dbelt � 2a�00;2D, equal to R1DðrÞ.

The calculated RðrÞ of the nanobelt is shown in Fig. 2. Here, we

use the parameter �00;2D ¼ 1. The RDFs of the wire and the

sheet are also plotted in the figure, assuming the same atomic

densities. For r! 0, the RDF of the nanobelt approaches the

RDF of the two-dimensional sheet and, for r� a, it merges

into that of the wire. We know the dimensional dependence of

RDF by such simple calculations.

2.3. Nanosheet

In this subsection, we consider a realistic model. First, we

take up the nanosheet with a thickness of t as shown in Fig. 3.

The area is L	 L and it is assumed that r� L. The atomic

number density in the sheet is �00;3D. Here, we also consider the

PRDF at p, Rðr; pÞ, where p is the distance from the bottom

wall of the sheet to the center of the sphere with a radius r, as

shown in Fig. 3(b). Rðr; pÞ is obtained as product of �00;3D and

the volume of the overlapping part of the sheet and the

spherical shell with a radius r and a thickness dr, shown by the

bold line in the figure. RsheetðrÞ is given by
R t

0 Rðr; pÞ dp=t. In the

case of r � t=2, Rðr; pÞ is given as the number of atoms in the

complete spherical shell for r � p � t � r. Rðr; pÞ is propor-

tional to the surface area of the object obtained by rotating the

fan with an interior angle � and �0 for p � r and t � r � p � t,

respectively, where � ¼ arccosðp=rÞ and �0 ¼ arccos½ðt � pÞ=r�.

Then, for r � t=2,

RsheetðrÞ ¼

Z r

0

2�r2 1þ
p

r

� �
dpþ

Z t�r

r

4�r2 dp

�

þ

Z t

t�r

2�r2 1þ
t � p

r

� �
dp

�
�00;3D=t:

In the case of t=2 � r � t, Rðr; pÞ ¼ 2�r2ð1þ p=rÞ�00;3D for

p � t � r and Rðr; pÞ ¼ 2�r2½1þ ðt � pÞ=r��00;3D for r � p � t.

For t � r � p � r, Rðr; pÞ is given as a product of �00;3D and the

surface area of the object obtained by rotating the bold line

shown in Fig. 3(b). For t=2 � r � t,

RsheetðrÞ ¼

Z t�r

0

2�r2 1þ
p

r

� �
dpþ

Z r

t�r

2�rt dp

�

þ

Z t

r

2�r2 1þ
t � p

r

� �
dp

�
�00;3D=t:

Since, in the case of r � t, Rðr; pÞ ¼ 2�rt for all p,

RsheetðrÞ ¼
Rt
0

2�rt dp�00;3D=t:

By calculating the above integrations, we finally obtain the

RDF of the nanosheet as follows.

RsheetðrÞ ¼
ð4�r2t � 2�r3Þ�00;3D=t ðr � tÞ

2�tr�00;3D ðr � tÞ.

�
ð9Þ

Fig. 4(a) shows the RDF calculated on the nanosheet. In the

calculations, the atomic number density in the nanosheet �00;3D

is unity. For r� t, the RDFs are proportional to r2. This r

dependence corresponds with the case of the three-dimen-
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Figure 3
(a) Three-dimensional scheme of a nanosheet with thickness t. (b) The
sectioned diagram of the nanosheet.

Figure 4
(a) The radial distribution function and (b) the correction factor for the
nanosheet with thickness t.



sional particle mentioned in x2.2. For r> t, RsheetðrÞ / r,

corresponding with R2DðrÞ. The correction factor fsheetðrÞ,

which is defined by equation (4), is shown in Fig. 4(b). At

r ¼ 0, f ðrÞ is unity and it linearly decreases with r in the region

0< r< t.

2.4. Nanobelt

We consider a nanobelt with a

width a and a thickness t, as

shown in Fig. 5. Let the length of

the belt L be much longer than r.

Fig. 5(b) shows a sectioned

diagram of the belt. The center

of the circle (P) in the figure is at

distances p from the left wall and

q from the bottom wall. The

PRDF at ðp; qÞ, Rðr; p; qÞ, is

proportional to the surface area

of the part of the sphere that

crosses the belt. The surface area

of the object obtained by

rotating by �ðxÞ around the x

axis with radius yðxÞ is obtained

by S ¼
R R

�ðxÞ yðxÞ d� ds, where

ds ¼ ðdx2 þ dy2Þ1=2. In the case

of a sphere, y ¼ ðr2 � x2Þ1=2 and

S ¼
R

r�ðxÞ dx. Here, we calcu-

late Rðr; p; qÞ by separating six

parts, L1–L3, R1–R3, as shown

in Fig. 5(b). The surface area of

L2 is obtained by the rotation

from zero to �1ðxÞ and from

�� �1ðxÞ to �, and the area of R2 is obtained by the rotation

from zero to �2ðxÞ and from �� �2ðxÞ to �, as shown in Fig.

5(c). The surface areas of the other parts are obtained by the

rotation of �. Then Rðr; p; qÞ is given by

Rðr; p; qÞ ¼ �00;3D

Z
L1

�r dxþ

Z
L2

2�1ðxÞr dxþ

Z
L3

�r dx

�

þ

Z
R1

�r dxþ

Z
R2

2�2ðxÞr dxþ

Z
R3

�r dx

�
: ð10Þ

The direction of the x axis is shown in Fig. 5(b) and the origin

of the x axis is the center of the corresponding sphere. �1ðxÞ

and �2ðxÞ are given by

�1ðxÞ ¼ arcsin
p

ðr2 � x2Þ1=2
;

�2ðxÞ ¼ arcsin
a� p

ðr2 � x2Þ1=2
;

as shown in Fig. 5(c). The integral ranges in equation (10)

depend on the relations between r, t, a, p and q. The integral

ranges of the left side (L1, L2 and L3) for various conditions

of the above parameters are shown in Table 1. For R1,

R2 and R3, the integral ranges are obtained by substituting

a� p for p in the table. The case shown in Fig. 5(b) corre-

sponds to the condition r> p, ðr2 � p2Þ1=2 < q< r and

t � r< q< t � ðr2 � p2Þ1=2. Because the integrations for the

range L2 and R2 cannot be calculated analytically, they are

obtained by numerical calculations. RbeltðrÞ is given by

RbeltðrÞ ¼
Ra
0

Rt
0

Rðr; p; qÞ dq dp=ðtaÞ:
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Figure 5
(a) Three-dimensional scheme of nanobelt with width a and thickness t.
(b) Sectioned diagram of the nanobelt. (c) View along the x direction.

Table 1
Integral ranges of the left side (L1, L2 and L3) for various conditions of the relations between r, t, a, p and q.

Conditions L1 L2 L3

(i) r � p

r � q � t � r
R r

�r dx

q � t � r, q � r
R t�q

�r dx

q � t � r, q � r
R r

�q dx

t � r � q � r
R t�q

�q dx

(ii) r> p

t � ðr2 � p2Þ1=2 < q< ðr2 � p2Þ1=2
R t�q

�q dx

ðr2 � p2Þ1=2 < q< r and q> t � ðr2 � p2Þ1=2
R �ðr2�p2Þ1=2

�q dx
R t�q

�ðr2�p2Þ1=2 dx

q> r, q> t � ðr2 � p2Þ1=2
R �ðr2�p2Þ1=2

�r dx
R t�q

�ðr2�p2Þ1=2 dx

q< ðr2 � p2Þ1=2 and q< t � r
R ðr2�p2Þ1=2

�q dx
R r

ðr2�p2Þ1=2 dx

q< ðr2 � p2Þ1=2 and t � q � q � t � ðr2 � p2Þ1=2
R ðr2�p2Þ1=2

�q dx
R t�q

ðr2�p2Þ1=2 dx

r< q< t � r
R �ðr2�p2Þ1=2

�r dx
R ðr2�p2Þ1=2

�ðr2�p2Þ1=2 dx
R r

ðr2�p2Þ1=2 dx

q> r and t � r< q< t � ðr2 � p2Þ1=2
R �ðr2�p2Þ1=2

�r dx
R ðr2�p2Þ1=2

�ðr2�p2Þ1=2 dx
R t�q

ðr2�p2Þ1=2 dx

ðr2 � p2Þ1=2 < q< r and q< t � r
R �ðr2�p2Þ1=2

�q dx
R ðr2�p2Þ1=2

�ðr2�p2Þ1=2 dx
R r

ðr2�p2Þ1=2 dx

ðr2 � p2Þ1=2 < q< r and t � r< q< t � ðr2 � p2Þ1=2
R �ðr2�p2Þ1=2

�q dx
R ðr2�p2Þ1=2

�ðr2�p2Þ1=2 dx
R t�q

ðr2�p2Þ1=2 dx



The RDFs calculated for the nanobelts with various thick-

nesses t are shown in Fig. 6(a).

For r� a; t, RbeltðrÞ becomes flat and it is proportional to

at�00;3D, corresponding to R1DðrÞ. The correction factors

obtained by equation (4) are shown in Fig. 6(b). At r � 0,

fbeltðrÞ for t ¼ a and t ¼ a=2 are slightly larger than unity,

owing to the insufficiency of the accuracy of the numerical

calculation.

2.5. Nanorod and nanotube

In this subsection, first we consider the nanorod as shown in

Fig. 7(a). We also assume that r� L. Fig. 7(b) shows a

sectioned diagram. We consider the surface area of the over-

lapping part of the sphere with radius r and the rod with radius

a. The center of the sphere is distant from the center of the rod

by PA = p. The PRDF at p, Rðr; pÞ, is proportional to the

surface area. It is similar to the cases of the nanosheet and the

nanobelt. Rðr; pÞ is obtained as

Rðr; pÞ ¼
R
I1

4�ðxÞr dxþ
R
I2

2�r dx

� �
�00;3D;

where �ðxÞ is given by

�ðxÞ ¼ arcsin
a2 � ðx� pÞ2

r2 � x2

� �1=2

;

as shown in Fig. 7(c). The integral ranges I1 and I2 depend on

the relation between the parameters a, r and p. First, the case

of r< a is considered. In this case, when p� a< � r, the

sphere is perfectly enveloped in the rod. If p� a> � r, the

integral range on x is divided into two as I1:

p� a � x � r cos� and I2: r cos� � x � r, where

cos� ¼ ½ðp2 þ r2 � a2Þ=2pr�. Then Rðr; pÞ is given, for r< a, by

Rðr; pÞ ¼

4�r2�00;3D ðp � a� rÞ

� Rr cos �

p�a

4�ðxÞr dxþ
Rr

r cos �

2�r dx

�
�00;3D

¼

�
4r

Rr cos �

p�a

arcsin
a2 � ðx� pÞ

2

r2 � x2

� �1=2

dx

þ 2�r2 1�
p2 þ r2 � a2

2pr

� ��
�00;3D

ðp � a� rÞ.

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð11Þ

Since the RDF is given by
R a

0 Rðr; pÞ2�p dp=�a2, RrodðrÞ is

obtained from the above equations as

RrodðrÞ ¼ �
0
0;3D

Z a�r

0

4�r22�p dp=�a2

þ �00;3D

Z a

a�r

�
2�r2 1�

p2 þ r2 � a2

2pr

� �
2�p

þ 4r

Zr cos �

p�a

arcsin
a2 � ðx� pÞ2

r2 � x2

� �1=2

dx

�

	 2�p dp=�a2 ðr< aÞ: ð12Þ

The integration over x needs a numerical calculation.

In the case of r> a, Rðr; pÞ can be given by the second

formula in equation (11) when pþ a> r. When pþ a< r, the

circle with radius a, which corresponds with a section of the

rod, is completely enveloped by the circle with radius r. Then

Rðr; pÞ is given by
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Figure 7
(a) Nanorod with radius a. (b) Sectioned diagram of the nanorod whose
center is at A. (c) View along the x direction.

Figure 6
(a) The radial distribution functions and (b) the correction factors of the
nanobelts with various t.



Rðr; pÞ ¼ �00;3D

Z pþa

p�a

4�ðxÞr dx

¼ 4r�00;3D

Z pþa

p�a

arcsin
a2 � ðx� pÞ

2

r2 � x2

� �1=2

dx: ð13Þ

As a result, for r> a, Rrod is obtained as

RrodðrÞ ¼ �
0
0;3D

Z r�a

0

Z pþa

p�a

4r arcsin
a2 � ðx� pÞ

2

r2 � x2

� �1=2

dx

	 2�p dp=�a2

þ �00;3D

Z a

r�a

�
2�r2 1�

p2 þ r2 � a2

2pr

� �

þ 4r

Z r cos�

p�a

arcsin
a2 � ðx� pÞ

2

r2 � x2

� �1=2

dx

�

	 2�p dp=�a2 ðr � aÞ: ð14Þ

The integrations over x included in the first and the third terms

are calculated numerically.

Next, we consider a nanotube shown in Fig. 8. The external

and internal diameters are 2a and 2b, respectively. In the

calculation, we consider the PRDFs at p for the nanorod,

Raðr; pÞ and Rbðr; pÞ, where p is the distance between the

center of the tube and the sphere with radius r. The RDF of

the nanotube is given by using Raðr; pÞ and Rbðr; pÞ, as follows.

RtubeðrÞ ¼
Ra
b

½Raðr; pÞ � Rbðr; pÞ�2�p dp=�ða2 � b2Þ: ð15Þ

Raðr; pÞ can be calculated in the same way as the case of the

rod. Rbðr; pÞ can be given for the conditions of the parameters

as

Rbðr; pÞ ¼

4r�00;3D

Z pþb

p�b

arcsin
b2 � ðx� pÞ

2

r2 � x2

� �1=2

dx

ðp � r� bÞ

�00;3D

�
2�r2 1�

p2 þ r2 � b2

2pr

� �

þ 4r

Z p�b

r cos �

arcsin
b2 � ðx� pÞ

2

r2 � x2

� �1=2

dx

�

ðp � r� bÞ

0 ðp � rþ bÞ.

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð16Þ

By using the above equations, we calculate the RDFs of the

nanorod and the nanotubes, as shown in Fig. 9(a). In these

figures, we define a thickness t ¼ a� b. The atomic number

densities in the rod and the tubes, �00;3D, are unity. At r� a; t,

the RDFs have constant values which correspond with a

product of the sectioned area and the density. It is the same as

the case of the nanobelt. RtubeðrÞ with small thicknesses have

sharp peaks at r � 2a. The correction factors ftubeðrÞ are shown

in Fig. 9(b). The correction factor of the tube decreases with r

and has a shoulder at r � 2a� t.

2.6. Sphere

In this subsection, the RDFs for the sphere and the

spherical shell are calculated. First, the filled sphere with

radius a as shown in Fig. 10(a) is considered. In this case, we

consider Rðr; pÞ, where p is the length PA shown in Fig. 10. In

the case of r< a, it can be obtained as

Rðr; pÞ ¼

4�r2�00;3D ðp � a� rÞ

�00;3D

Rr
r cos �

2�r dx

¼ 2�r2�00;3D 1�
p2 þ r2 � a2

2pr

� �
ðp � a� rÞ.

8>>>><
>>>>:

ð17Þ

In the case of a< r< 2a,

Acta Cryst. (2006). A62, 444–453 Katsuaki Kodama et al. � Finite size effects of nanoparticles 449

research papers

Figure 9
(a) The radial distribution functions and (b) the correction factors of the
nanorod and the nanotubes with various t.

Figure 8
(a) Nanotube with external diameter 2a and an internal diameter 2b.
(b) Sectioned diagram of the nanotube.



Rðr; pÞ ¼

0 ðp � r� aÞ

�00;3D

Rr
r cos�

2�r dx

¼ 2�r2�00;3D 1�
p2 þ r2 � a2

2pr

� �
ðp � r� aÞ.

8>>>><
>>>>:

ð18Þ

For r> 2a, Rðr; pÞ ¼ 0. The RDF can be given by

RFsphereðrÞ ¼

R a

0 Rðr; pÞ4�p2 dp
4
3�a3

: ð19Þ

The above integrations of equations (17) and (18) give the

same results. Then,

RFsphereðrÞ ¼
�r2�00;3D

1
4

r

a

� �3

�3
r

a
þ 4

� �
ðr � 2aÞ

0 ðr>2aÞ.

8<
: ð20Þ

The finite size effect or the correction factor of the spherical

case has already been calculated by Mason (1968). This was

for the estimation of the RDF and the coordination numbers

of balls packed in a finite sphere, in order to discuss atoms in

liquids and not for the RDF of nanoparticles. The present

result is consistent with his.

In the case of the spherical shell with a thickness t ¼ a� b

shown in Fig. 10(b), we consider the PRDF at p for the filled

spheres with radii a and b, Raðr; pÞ and Rbðr; pÞ, respectively,

and the RDF can be given by

REsphereðrÞ ¼

R a

b Raðr; pÞ � Rbðr; pÞ
	 


4�p2 dp
4
3�ða

3 � b3Þ
: ð21Þ

Raðr; pÞ corresponds with equations (17) and (18). Rbðr; pÞ is

obtained as

Rbðr; pÞ ¼

0 ðp< r� bÞ

2�r2�00;3D 1�
p2 þ r2 � b2

2pr

� �

ðr� b � p � rþ bÞ

0 ðp> rþ bÞ:

8>>><
>>>:

ð22Þ

By using equations (17), (18), (21) and (22), the RDFs for the

spherical shells with various t are calculated by using

�0;3D ¼ 1, as shown in Fig. 11(a). The correction factors are

shown in Fig. 11(b).

3. Formulation of the finite size effect for PDF analysis

In this section, we present the formulation of the PDF analysis

which takes account of the finite size effect of a nanoparticle.

In the previous section, we neglect the atomic pair distribution

between the particles. Here, we consider the partial radial

distribution function including the atomic pair distributions

not only inside a particle but also between the particles. It is

assumed that the nanoparticles are in vacuum. Each particle is

distributed randomly and there is no atomic correlation

between the particles. In this assumption, the atomic distri-

bution outside the particle can be regarded as being

continuous with a density of �0, which corresponds with the

density averaged in the whole sample including all particles

and the space between them. The atomic arrangement inside a

particle is periodic and uniform with a density of �00 in a whole

particle (we neglect, for example, the rearrangement of the

surface atoms). Here we rewrite the radial distribution and the

partial radial distribution functions obtained for a single

particle made of atoms as RnanoðrÞ and Rnanoðr; pÞ [or

Rnanoðr; p; qÞ], respectively. Then the partial radial distribution

function Rðr; pÞ [or Rðr; p; qÞ] is given as follows.

Rðr; pÞ ¼ Rnanoðr; pÞ þ ½4�r2
� Snanoðr; pÞ��0;

where Snanoðr; pÞ shows a surface area of the sphere with a

radius r centered at P inside the particle. In the above equa-

tion, the first term shows the pair distribution inside the

particle, whereas the second term shows the pair distribution

outside the particle (the pair distribution between the
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Figure 11
(a) The radial distribution functions and (b) the correction factors of the
nanospheres with various t.

Figure 10
Sectioned diagram of (a) filled sphere and (b) spherical shell with
external and internal radii a and b, respectively.



particles). If the nanoparticle consists of continua,

Rnanoðr; pÞ=�00 becomes equal to Snanoðr; pÞ. Then the radial

distribution function is given by

RðrÞ ¼ RnanoðrÞ þ ½4�r2
� SnanoðrÞ��0;

where SnanoðrÞ is the surface area inside the particle averaged

by p. Since SnanoðrÞ is 4�r2f ðrÞ, the RDF can be represented as

RðrÞ ¼ f ðrÞR1ðrÞ þ 4�r2�0½1� f ðrÞ�; ð23Þ

where R1ðrÞ is the RDF of the bulk sample with infinite size.

Here we use equation (4) for the first term. For the bulk

sample, the PDF and the reduced PDF are given by

g1ðrÞ ¼ R1ðrÞ=4�r2�00;

G1ðrÞ ¼ 4�r�00½g1ðrÞ � 1�;
ð24Þ

where g1ðrÞ and G1ðrÞ are the PDF and the reduced PDF of

the bulk sample. From equations (1), (2), (23) and (24), the

PDF and the reduced PDF are represented as

gðrÞ ¼
�00
�0

f ðrÞg1ðrÞ þ 1� f ðrÞ; ð25Þ

GðrÞ ¼ f ðrÞG1ðrÞ þ 4�rð�00 � �0Þf ðrÞ: ð26Þ

In the case of the isotropic scattering in a sample with

infinite size, the structure function SðQÞ is generally given

using gðrÞ as

SðQÞ ¼ 1þ

Z
4�r2�0gðrÞ

sinðQrÞ

Qr
dr;

¼ 1þ

Z
4�r2�0½gðrÞ � 1�

sinðQrÞ

Qr
dr

þ

Z
4�r2�0

sinðQrÞ

Qr
dr: ð27Þ

This equation leads to the general relation between SðQÞ and

GðrÞ shown in equation (3). By substituting equation (25) into

equation (27), and by using equation (24), we can obtain the

SðQÞ for nanoparticles:

SðQÞ ¼ 1þ

Z
4�r2�00½g1ðrÞ � 1�

sinðQrÞ

Qr
dr

þ

Z
4�r2
ð�00 � �0Þf ðrÞ

sinðQrÞ

Qr
dr

þ

Z
4�r2�0

sinðQrÞ

Qr
dr

¼ 1þ
1

Q

Z
f ðrÞG1ðrÞ sinðQrÞ dr

þ
1

Q

Z
4�rð�00 � �0Þf ðrÞ sinðQrÞ dr

þ

Z
4�r2�0

sinðQrÞ

Qr
dr: ð28Þ

In equations (27) and (28), the third and the fourth terms,

respectively, are neglected because of overlapping with the

direct beam. In the cases of nanoparticles, the third term of

equation (28) appears in comparison with the case of the bulk

[equation (27)]. This term corresponds to the Fourier trans-

form of the second term of equation (26). The second term of

equation (26) is independent of the arrangement of the atoms

inside the nanoparticle and depends only on the shape and the

size of the nanoparticles (and the densities), while the first

term depends on both the atomic arrangement in the nano-

particles and the shape and the size of the nanoparticles. Then

the third term of equation (28) has a structure only in the

small-Q region, corresponding to small-angle scattering.

In the conventional PDF analysis for a solid sample, the

data of SðQÞ in such a small Q region are not used and SðQÞ is

regarded as zero in the limit of Q! 0. Here we represent

the structure function as a superposition of two parts,

SðQÞ ¼ SSðQÞ þ SLðQÞ, where SLðQÞ is the structure function

used in conventional PDF analysis and SSðQÞ is the function

which has a structure only in the small-Q region, as follows.

SLðQÞ ¼ 1þ
1

Q

Z
f ðrÞG1ðrÞ sinðQrÞ dr;

SSðQÞ ¼
1

Q

Z
4�rð�00 � �0Þf ðrÞ sinðQrÞ dr:

From the inverse Fourier transforms of the above equations,

we can obtain

f ðrÞG1ðrÞ ¼
2

�

Z
Q½SLðQÞ � 1� sinðQrÞ dQ; ð29Þ

4�rð�00 � �0Þf ðrÞ ¼
2

�

Z
QSSðQÞ sinðQrÞ dQ: ð30Þ

In the analysis of a nanoparticle without small-angle-scat-

tering data, we may use equation (29) and modify the reduced

PDF by the relation

GðrÞ ¼ f ðrÞG1ðrÞ: ð31Þ

As a result, the reduced PDF of a nanoparticle may be

described by a product of the correction factor and the

reduced PDF of the bulk sample. The same relation is reached
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Figure 12
The reduced PDF of anatase TiO2 nanoparticles obtained by neutron
diffraction is shown by open circles. The gray and black lines show the
reduced PDF of bulk TiO2 and that modified by equation (31),
respectively. The inset shows the distribution of the diameter of the
anatase TiO2 nanoparticles.



by another method without the pair distribution between

particles (Azaroff et al., 1972).

4. Application to experimental data

In this section, we apply the obtained equations to the

experimental data on anatase-type TiO2 nanoparticles. The

shape of the particle is almost spherical and the distribution of

the diameter is shown in the inset of Fig. 12. It is determined

by the transmission-electron-microscope image. The diffrac-

tion data are collected at the neutron powder diffractometer

NPDF (Proffen et al., 2002) in the Manuel Lujan Neutron

Scattering Center of Los Alamos National Laboratory. The

data in the range 1:65<Q< 45 Å�1 are transformed into the

reduced PDF GðrÞ by using the program PDFgetN (Proffen &

Billinge, 1999). The obtained GðrÞ is shown in the main panel

of Fig. 12 by open circles. The gray line in the figure shows

G1ðrÞ, which is obtained from the diffraction data of the bulk

sample of anatase TiO2 with an average diameter of �200 nm.

The diffraction data of the bulk sample are collected under the

same experimental conditions. The peak intensities of GðrÞ of

the nanoparticle are apparently damped with increasing r, in

comparison with the intensities of G1ðrÞ. The black line shows

the reduced PDF obtained by using equation (31). Here we

use the correction factor f ðrÞ which takes account of the

diameter distribution,

f ðrÞ ¼
P

d

Nd fdðrÞ; ð32Þ

where Nd is the percentage of the nanoparticles with diameter

d, shown in the inset of Fig. 12. fdðrÞ is the correction factor for

a spherical nanoparticle with diameter d, which is given by

equation (20). The modified GðrÞ can reproduce the observed

data in the whole r region. We can conclude that our modified

formula is valid for the PDF analysis of nanoparticles.

5. Discussion

In this article, we consider the finite size effects of nano-

particles on the PDF analysis. On the other hand, studies on

diffraction by small crystalline particles were performed

widely in 1930s (for example, Patterson, 1939). In these

studies, the effects of the sizes and shapes of the particles on

the diffraction peaks were discussed. Patterson gave the

diffraction pattern as the convolution of the structure factor

and the shape function which depends on the particle shape

(Patterson, 1939). He basically calculated the shape function

for the tetrahedron and, for other polyhedrons, the shape

functions were obtained as sums of the functions of their

constituent tetrahedra. His calculations were performed in the

reciprocal-lattice space and the shape functions were given as

functions of the reciprocal-lattice vector. Our calculations, on

the other hand, are performed in the real space and the

correction factor is a function only of the distance in the real

space. While the method and obtained functions by Patterson

are different from those of our calculation, the shape function

should be essentially related to the correction factor. If the

shape functions can be averaged for all directions (powder

averaged), they should be related to the scattering functions of

small-angle scattering, which are related to the correction

factors by equation (30).

We present the correction factors for various shapes of

nanoparticles and the modified formulas of PDF analysis with

the correction factor. These results enable us to determine the

crystal structure of nanoparticles and/or their shape and size.

Usually, the shape and the size of the particles are determined

by small-angle scattering. In the small-angle-scattering

measurement, because the wavevector is much smaller than

the inverse of the atomic scale, and thus the particle can be

regarded as a continuum, the scattering profile depends on the

shape and the size of the particle and is independent of the

structural coherence inside the particle. In the PDF analysis,

G1ðrÞ of the continuum is zero, which is obtained from the

equation R1ðrÞ ¼ 4�r2�00 and equation (24). Then the reduced

PDF strongly depends on the structural coherence in the

particle. It can cause a discrepancy between the particle sizes

estimated by the PDF analysis and small-angle scattering, and

such a discrepancy gives us information about local lattice

disorder in the nanoparticle. Gilbert et al. (2004) have shown

that the PDF profile of a zinc sulfide nanoparticle decreases

with r more rapidly than the profile expected from the shape

and size of the particle which are determined by the small-

angle scattering. They pointed out that the reduction of the

PDF profile is due to the local structural disorder driven by

the strain in the particle. In addition, they estimated the

structural coherence length. They speculate that the strain is

caused by the irregular surface. The PDF analysis which takes

account of the finite size effect of nanoparticles enable us not

only to determine the crystal structure but also to estimate the

local lattice disorder in nanoparticles.

6. Conclusions

PDFs for various nanoparticles strongly depend on their

shapes and sizes. The modified equation of the reduced PDF

including the finite size effect of a nanoparticle is described by

a simple formula, a product of the correction factor for the

shape and the size of the particle and the reduced PDF of a

bulk sample. It is confirmed that the modified formula actually

reproduces the experimental reduced PDF of TiO2 nano-

particles. This analysis also enables us to discuss the local

lattice disorder included in the nanoparticle.
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